Design and assembly of Ag-decorated Bi2O3 @ 3D MXene Schottky heterojunction for the highly permeable and multiple-antifouling of fibrous membrane in the purification of complex emulsified oil pollutants

J Hazard Mater. 2023 Sep 15:458:131965. doi: 10.1016/j.jhazmat.2023.131965. Epub 2023 Jun 28.

Abstract

Membrane separation technology has potential for purifying emulsified oily wastewater. However, the oils, soluble organic substances, and microorganisms can cause complex membrane fouling problems, thereby reducing the separation efficiency and service life. Herein, a highly permeable and multiple-antifouling composite membrane was prepared using porous PAN fibrous mat as support backbone for the assembly of Ag-decorated Bi2O3 @ 3D MXene Schottky heterojunction and hydrophilic TA as the adhesive. The unique arrangement of 3D MXene heterojunction and hydrophilic functionalization effectively broke through the limitation of separation flux and synergistically enhanced the anti-fouling performance of membrane. Such fibrous composite membrane achieved an exceedingly high permeability (2717-3328 L·m-2·h-1) for various emulsified oils, while ensuring excellent oil/water emulsion retention rate (99.59%) and good cycle stability. Meanwhile, the composite membrane displayed favorable photocatalytic degradation performance toward degrading MeB (96.1%) and antibacterial ability. Furthermore, the MD simulation and free radical trapping experiments were carried out to unravel the molecular interactions during the separation process and the photocatalytic mechanism of composite membrane, respectively. Overall, the combination of photocatalytic self-cleaning, anti-oil adhesion, and antibacterial effect renders the membrane high permeability and multiple-antifouling performance, which provides a new strategy for dealing with complex oily wastewater in petrochemical industry.

Keywords: 3D MXene based heterojunction; Antibacterial; Multiple-antifouling; Oil/water separation; Photocatalytic degradation.