Stable Multicomponent Multiphase All Active Material Lithium-Ion Battery Anodes

ACS Appl Mater Interfaces. 2023 Jul 26;15(29):34662-34674. doi: 10.1021/acsami.3c02896. Epub 2023 Jul 11.

Abstract

Due to their high energy density, lithium-ion batteries have been the state-of-the-art energy storage technology for many applications. Energy density can be further improved by engineering of the electrode architecture and microstructure, in addition to more common improvements via materials chemistry. All active material (AAM) electrodes consist of only the electroactive material that stores energy, and such electrodes have advantages to conventional composite processing with regards to improved mechanical stability at increased thicknesses and ion transport properties. However, the absence of binders and composite processing makes the electrode more vulnerable to electroactive materials with volume change upon cycling. Also, the electroactive material must have sufficient electronic conductivity to avoid large matrix electronic overpotentials during electrochemical cycling. TiNb2O7 (TNO) and MoO2 (MO) are electroactive materials with potential advantages as AAM electrodes due to relatively high volumetric energy density. TNO has higher energy density, and MO has much higher electronic conductivity, and thus a multicomponent blend of these materials was evaluated as an AAM anode. Herein, blends of TNO and MO as AAM anodes were investigated, where this is the first use of a multicomponent AAM anode. Electrodes that had both TNO and MO had the highest volumetric energy density, rate capability, and cycle life relative to single component TNO and MO anodes. Thus, using multicomponent materials provides a route to improve AAM electrochemical systems.

Keywords: all active material electrode; electronic conductivity; lithium-ion battery; multicomponent materials; percolation.