Galectin-1-mediated MET/AXL signaling enhances sorafenib resistance in hepatocellular carcinoma by escaping ferroptosis

Aging (Albany NY). 2023 Jul 11;15(13):6503-6525. doi: 10.18632/aging.204867. Epub 2023 Jul 11.

Abstract

Sorafenib, a small-molecule inhibitor targeting several tyrosine kinase pathways, is the standard treatment for advanced hepatocellular carcinoma (HCC). However, not all patients with HCC respond well to sorafenib, and 30% of patients develop resistance to sorafenib after short-term treatment. Galectin-1 modulates cell-cell and cell-matrix interactions and plays a crucial role in HCC progression. However, whether Galectin-1 regulates receptor tyrosine kinases by sensitizing HCC to sorafenib remains unclear. Herein, we established a sorafenib-resistant HCC cell line (Huh-7/SR) and determined that Galectin-1 expression was significantly higher in Huh-7/SR cells than in parent cells. Galectin-1 knockdown reduced sorafenib resistance in Huh-7/SR cells, whereas Galectin-1 overexpression in Huh-7 cells increased sorafenib resistance. Galectin-1 regulated ferroptosis by inhibiting excessive lipid peroxidation, protecting sorafenib-resistant HCC cells from sorafenib-mediated ferroptosis. Galectin-1 expression was positively correlated with poor prognostic outcomes for HCC patients. Galectin-1 overexpression promoted the phosphorylation of AXL receptor tyrosine kinase (AXL) and MET proto-oncogene, receptor tyrosine kinase (MET) signaling, which increased sorafenib resistance. MET and AXL were highly expressed in patients with HCC, and AXL expression was positively correlated with Galectin-1 expression. These findings indicate that Galectin-1 regulates sorafenib resistance in HCC cells through AXL and MET signaling. Consequently, Galectin-1 is a promising therapeutic target for reducing sorafenib resistance and sorafenib-mediated ferroptosis in patients with HCC.

Keywords: Galectin-1; ferroptosis; hepatocellular carcinoma; sorafenib resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Hepatocellular* / drug therapy
  • Carcinoma, Hepatocellular* / genetics
  • Carcinoma, Hepatocellular* / metabolism
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm
  • Ferroptosis*
  • Galectin 1 / genetics
  • Humans
  • Liver Neoplasms* / drug therapy
  • Liver Neoplasms* / genetics
  • Liver Neoplasms* / metabolism
  • Receptor Protein-Tyrosine Kinases
  • Sorafenib / pharmacology
  • Sorafenib / therapeutic use

Substances

  • Galectin 1
  • Receptor Protein-Tyrosine Kinases
  • Sorafenib
  • LGALS1 protein, human