The current scenario and future perspectives of transgenic oilseed mustard by CRISPR-Cas9

Mol Biol Rep. 2023 Sep;50(9):7705-7728. doi: 10.1007/s11033-023-08660-6. Epub 2023 Jul 11.

Abstract

Purpose: Production of a designer crop having added attributes is the primary goal of all plant biotechnologists. Specifically, development of a crop with a simple biotechnological approach and at a rapid pace is most desirable. Genetic engineering enables us to displace genes among species. The newly incorporated foreign gene(s) in the host genome can create a new trait(s) by regulating the genotypes and/or phenotypes. The advent of the CRISPR-Cas9 tools has enabled the modification of a plant genome easily by introducing mutation or replacing genomic fragment. Oilseed mustard varieties (e.g., Brassica juncea, Brassica nigra, Brassica napus, and Brassica carinata) are one such plants, which have been transformed with different genes isolated from the wide range of species. Current reports proved that the yield and value of oilseed mustard has been tremendously improved by the introduction of stably inherited new traits such as insect and herbicide resistance. However, the genetic transformation of oilseed mustard remains incompetent due to lack of potential plant transformation systems. To solve numerous complications involved in genetically modified oilseed mustard crop varieties regeneration procedures, scientific research is being conducted to rectify the unwanted complications. Thus, this study provides a broader overview of the present status of new traits introduced in each mentioned varieties of oilseed mustard plant by different genetical engineering tools, especially CRISPR-Cas9, which will be useful to improve the transformation system of oilseed mustard crop plants.

Methods: This review presents recent improvements made in oilseed mustard genetic engineering methodologies by using CRISPR-Cas9 tools, present status of new traits introduced in oilseed mustard plant varieties.

Results: The review highlighted that the transgenic oilseed mustard production is a challenging process and the transgenic varieties of oilseed mustard provide a powerful tool for enhanced mustard yield. Over expression studies and silencing of desired genes provide functional importance of genes involved in mustard growth and development under different biotic and abiotic stress conditions. Thus, it can be expected that in near future CRISPR can contribute enormously in improving the mustard plant's architecture and develop stress resilient oilseed mustard plant species.

Keywords: Abiotic stress tolerance; Biotic stress tolerance; CRISPR-Cas9; Oilseed mustard.

Publication types

  • Review

MeSH terms

  • Brassica napus* / genetics
  • CRISPR-Cas Systems / genetics
  • Genome, Plant
  • Mustard Plant* / genetics
  • Plants, Genetically Modified