TiS3 Nanoribbons: A Novel Material for Ultra-Sensitive Photodetection across Extreme Temperature Ranges

Sensors (Basel). 2023 May 21;23(10):4948. doi: 10.3390/s23104948.

Abstract

Photodetectors that can operate over a wide range of temperatures, from cryogenic to elevated temperatures, are crucial for a variety of modern scientific fields, including aerospace, high-energy science, and astro-particle science. In this study, we investigate the temperature-dependent photodetection properties of titanium trisulfide (TiS3)- in order to develop high-performance photodetectors that can operate across a wide range of temperatures (77 K-543 K). We fabricate a solid-state photodetector using the dielectrophoresis technique, which demonstrates a quick response (response/recovery time ~0.093 s) and high performance over a wide range of temperatures. Specifically, the photodetector exhibits a very high photocurrent (6.95 × 10-5 A), photoresponsivity (1.624 × 108 A/W), quantum efficiency (3.3 × 108 A/W·nm), and detectivity (4.328 × 1015 Jones) for a 617 nm wavelength of light with a very weak intensity (~1.0 × 10-5 W/cm2). The developed photodetector also shows a very high device ON/OFF ratio (~32). Prior to fabrication, the TiS3 nanoribbons were synthesized using the chemical vapor technique and characterized according to their morphology, structure, stability, and electronic and optoelectronic properties; this was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and a UV-Visible-NIR spectrophotometer. We anticipate that this novel solid-state photodetector will have broad applications in modern optoelectronic devices.

Keywords: TiS3 nanoribbons; cryogenic temperature; elevated temperature; wide operating temperature photodetector.

Grants and funding

The authors express their sincere gratitude to the Russian Science Foundation and the Ministry of Science and Higher Education of the Russian Federation for the financial support for the conducted research.