Gearbox Fault Diagnosis Method Based on Multidomain Information Fusion

Sensors (Basel). 2023 May 19;23(10):4921. doi: 10.3390/s23104921.

Abstract

Traditional methods of gearbox fault diagnosis rely heavily on manual experience. To address this problem, our study proposes a gearbox fault diagnosis method based on multidomain information fusion. An experimental platform consisting of a JZQ250 fixed-axis gearbox was built. An acceleration sensor was used to obtain the vibration signal of the gearbox. Singular value decomposition (SVD) was used to preprocess the signal in order to reduce noise, and the processed vibration signal was subjected to short-time Fourier transform to obtain a two-dimensional time-frequency map. A multidomain information fusion convolutional neural network (CNN) model was constructed. Channel 1 was a one-dimensional convolutional neural network (1DCNN) model that input a one-dimensional vibration signal, and channel 2 was a two-dimensional convolutional neural network (2DCNN) model that input short-time Fourier transform (STFT) time-frequency images. The feature vectors extracted using the two channels were then fused into feature vectors for input into the classification model. Finally, support vector machines (SVM) were used to identify and classify the fault types. The model training performance used multiple methods: training set, verification set, loss curve, accuracy curve and t-SNE visualization (t-SNE). Through experimental verification, the method proposed in this paper was compared with FFT-2DCNN, 1DCNN-SVM and 2DCNN-SVM in terms of gearbox fault recognition performance. The model proposed in this paper had the highest fault recognition accuracy (98.08%).

Keywords: convolutional neural network; fault diagnosis; gearbox; singular value decomposition; support vector machine.