Wood Veneer Defect Detection Based on Multiscale DETR with Position Encoder Net

Sensors (Basel). 2023 May 17;23(10):4837. doi: 10.3390/s23104837.

Abstract

Wood is one of the main building materials. However, defects on veneers result in substantial waste of wood resources. Traditional veneer defect detection relies on manual experience or photoelectric-based methods, which are either subjective and inefficient or need substantial investment. Computer vision-based object detection methods have been used in many realistic areas. This paper proposes a new deep learning defect detection pipeline. First, an image collection device is constructed and a total of more than 16,380 defect images are collected coupled with a mixed data augmentation method. Then, a detection pipeline is designed based on DEtection TRansformer (DETR). The original DETR needs position encoding functions to be designed and is ineffective for small object detection. To solve these problems, a position encoding net is designed with multiscale feature maps. The loss function is also redefined for much more stable training. The results from the defect dataset show that using a light feature mapping network, the proposed method is much faster with similar accuracy. Using a complex feature mapping network, the proposed method is much more accurate with similar speed.

Keywords: convolutional neural networks; defect detection; transformer; wood veneer.