Improved the Impact of SST for HY-2A Scatterometer Measurements by Using Neural Network Model

Sensors (Basel). 2023 May 17;23(10):4825. doi: 10.3390/s23104825.

Abstract

The variation of sea surface temperature (SST) can change the backscatter coefficient measured by a scatterometer, resulting in a decrease in the accuracy of the sea surface wind measurement. This study proposed a new approach to correct the effect of SST on the backscatter coefficient. The method focuses on the Ku-band scatterometer HY-2A SCAT, which is more sensitive to SST than C-band scatterometers, can improve the wind measurement accuracy of the scatterometer without relying on reconstructed geophysical model function (GMF), and is more suitable for operational scatterometers. Through comparisons to WindSat wind data, we found that the Ku-band scatterometer HY-2A SCAT wind speeds are systemically lower under low SST and higher under high SST conditions. We trained a neural network model called the temperature neural network (TNNW) using HY-2A data and WindSat data. TNNW-corrected backscatter coefficients retrieved wind speed with a small systematic deviation from WindSat wind speed. In addition, we also carried out a validation of HY-2A wind and TNNW wind using European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data as a reference, and the results showed that the retrieved TNNW-corrected backscatter coefficient wind speed is more consistent with ECMWF wind speed, indicating that the method is effective in correcting SST impact on HY-2A scatterometer measurements.

Keywords: backscatter coefficient; ocean remote sensing; scatterometer; sea surface temperature.