Associations of neutral pH, low-GDP peritoneal dialysis solutions with patient survival, transfer to haemodialysis and peritonitis

Nephrol Dial Transplant. 2024 Jan 31;39(2):222-232. doi: 10.1093/ndt/gfad153.

Abstract

Background: Peritoneal dialysis (PD) solutions containing low levels of glucose degradation products (GDPs) are associated with attenuation of peritoneal membrane injury and vascular complications. However, clinical benefits associated with neutral-pH, low-GDP (N-pH/L-GDP) solutions remain unclear.

Methods: Using data from the Australia and New Zealand Dialysis and Transplant Registry, we examined the associations between N-pH/L-GDP solutions and all-cause mortality, cause-specific mortality, transfer to haemodialysis (HD) for ≥30 days and PD peritonitis in adult incident PD patients in Australia and New Zealand between 1 January 2005 and 31 December 2020 using adjusted Cox regression analyses.

Results: Of 12 814 incident PD patients, 2282 (18%) were on N-pH/L-GDP solutions. The proportion of patients on N-pH/L-GDP solutions each year increased from 11% in 2005 to 33% in 2017. During the study period, 5330 (42%) patients died, 4977 (39%) experienced transfer to HD and 5502 (43%) experienced PD peritonitis. Compared with the use of conventional solutions only, the use of any form of N-pH/L-GDP solution was associated with reduced risks of all-cause mortality {adjusted hazard ratio [aHR] 0.67 [95% confidence interval (CI) 0.61-0.74]}, cardiovascular mortality [aHR 0.65 (95% CI 0.56-0.77)], infection-related mortality [aHR 0.62 (95% CI 0.47-0.83)] and transfer to HD [aHR 0.79 (95% CI 0.72-0.86)] but an increased risk of PD peritonitis [aHR 1.16 (95% CI 1.07-1.26)].

Conclusions: Patients who received N-pH/L-GDP solutions had decreased risks of all-cause and cause-specific mortality despite an increased risk of PD peritonitis. Studies assessing the causal relationships are warranted to determine the clinical benefits of N-pH/L-GDP solutions.

Keywords: dialysis solutions; mortality; peritoneal dialysis; peritonitis; transfer to haemodialysis.

MeSH terms

  • Adult
  • Dialysis Solutions / adverse effects
  • Humans
  • Hydrogen-Ion Concentration
  • Peritoneal Dialysis* / adverse effects
  • Peritonitis* / chemically induced
  • Peritonitis* / etiology
  • Renal Dialysis / adverse effects

Substances

  • Dialysis Solutions