Industrial garbage-derived biocompost enhances soil organic carbon fractions, CO2 biosequestration, potential carbon credits and sustainability index in a rice-wheat ecosystem

Environ Res. 2023 Oct 15:235:116525. doi: 10.1016/j.envres.2023.116525. Epub 2023 Jul 8.

Abstract

The objectives of this experiment were i) to study on the garbage composting to improve the soil organic carbon (SOC) pools (active and passive), ii) work out the carbon (C) budgeting, and iii) cut off C footprints (CFs) in the rice (Oryza sativa L.)-wheat (Triticum aestivum L.) farming to achieve the long-term sustainability. The main plots show four fertilizer levels (F0 = control, F1 = 112.5:45:45 kg nitrogen; phosphorus; potassium (NPK) ha-1, F2 = 150:60:60 kg NPK ha-1 and F3 = 150:60:60 kg NPK ha-1+ 5 kg iron (Fe) + 5 kg zinc (Zn) were applied, while in sub plots with the combination of three industrial garbage (I1 = carpet garbage; I2 = pressmud; I3 = bagasse) and three microbial culture (M1 = Pleurotus sajor-caju, M2 = Azotobacter chroococcum; M3 = Trichoderma viride) made into nine treatment combinations were applied. Based on the interaction, treatment F3 × I1+M3 resulted in a maximum of 25.1 and 22.4 Mg ha-1 total CO2 biosequestration by rice and wheat, respectively. However, it was cut off CFs by 29.9 and 22.2% more than F1 × I3+M1. Based on the soil C fractionation study, in the main plot treatment, F3 was active very labile C (VLC) and moderately labile C (MLC) and passive less labile C (LLC) and recalcitrant C (RC) SOC fractions contributed by 68.3 and 30.0%, respectively, of total SOC. However, in the sub plot, treatment I1+M3 found 68.2% and 29.8% active and passive SOC fractions, respectively, of total SOC. Regarding the soil microbial biomass C (SMBC) study, F3 had 37.7% higher than F0. However, in the sub plot, I1+M3 was seen to be 21.5% greater than I2+M1. Furthermore, wheat and rice had higher 1002 and 897 US$ ha-1 potential C credit in F3 × I1+M3, respectively. SOC fractions were perfectly positively correlated with SMBC. A positive (+) correlation was observed among grain yield (wheat and rice) and SOC pools in soil. However, a negative correlation was found between the C sustainability index (CSI) and greenhouse gas intensity (GHGI). The variability in wheat and rice grain yield was 46 and 74%, respectively, contributed by the SOC pools. Therefore, this study hypothesised that applying inorganic nutrients and industrial garbage converted into biocompost cut off C emissions and reduced the demand for chemical fertilizers, opening garbage disposal, and simultaneously enhancing the SOC pools.

Keywords: Active and passive C pools; Biocompost; C footprints; CO(2) biosequestration; Potential C credits; Wheat-rice.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agriculture / methods
  • Carbon
  • Carbon Dioxide
  • Ecosystem
  • Fertilizers / analysis
  • Nitrogen / analysis
  • Oryza*
  • Soil*
  • Triticum

Substances

  • Soil
  • Carbon
  • Carbon Dioxide
  • Fertilizers
  • Nitrogen