Single cobalt atoms anchored on Ti3C2Tx with dual reaction sites for efficient adsorption-degradation of antibiotic resistance genes

Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2305705120. doi: 10.1073/pnas.2305705120. Epub 2023 Jul 10.

Abstract

The assimilation of antibiotic resistance genes (ARGs) by pathogenic bacteria poses a severe threat to public health. Here, we reported a dual-reaction-site-modified CoSA/Ti3C2Tx (single cobalt atoms immobilized on Ti3C2Tx MXene) for effectively deactivating extracellular ARGs via peroxymonosulfate (PMS) activation. The enhanced removal of ARGs was attributed to the synergistic effect of adsorption (Ti sites) and degradation (Co-O3 sites). The Ti sites on CoSA/Ti3C2Tx nanosheets bound with PO43- on the phosphate skeletons of ARGs via Ti-O-P coordination interactions, achieving excellent adsorption capacity (10.21 × 1010 copies mg-1) for tetA, and the Co-O3 sites activated PMS into surface-bond hydroxyl radicals (•OHsurface), which can quickly attack the backbones and bases of the adsorbed ARGs, resulting in the efficient in situ degradation of ARGs into inactive small molecular organics and NO3. This dual-reaction-site Fenton-like system exhibited ultrahigh extracellular ARG degradation rate (k > 0.9 min-1) and showed the potential for practical wastewater treatment in a membrane filtration process, which provided insights for extracellular ARG removal via catalysts design.

Keywords: adsorption; antibiotic resistance genes; degradation; dual-reaction-site; single cobalt atoms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Anti-Bacterial Agents* / pharmacology
  • Cobalt
  • Drug Resistance, Microbial / genetics
  • Genes, Bacterial*
  • Titanium / pharmacology
  • Wastewater

Substances

  • Anti-Bacterial Agents
  • Cobalt
  • MXene
  • Titanium
  • Wastewater
  • peroxymonosulfate