Homologous recombination pathway gene variants identified by tumor-only sequencing assays in lung carcinoma patients

Transl Lung Cancer Res. 2023 Jun 30;12(6):1236-1244. doi: 10.21037/tlcr-22-749. Epub 2023 Jun 8.

Abstract

Background: The homologous recombination (HR) repair pathway plays a key role in double-stranded DNA break repair, and germline HR pathway gene variants are associated with increased risk of several cancers, including breast and ovarian cancer. HR deficiency is also a therapeutically targetable phenotype.

Methods: Somatic (tumour-only) sequencing was performed on 1,109 cases of lung tumors, and the pathological data were reviewed to filter for lung primary carcinomas. Cases were filtered for variants (disease-associated or of uncertain significance) in 14 HR pathway genes, including BRCA1, BRCA2, and ATM. The clinical, pathological and molecular data were reviewed.

Results: Sixty-one HR pathway gene variants in 56 patients with primary lung cancer were identified. Further filtering by variant allele fraction (VAF) of ≥30% identified 17 HR pathway gene variants in 17 patients. ATM gene variants were most the commonly identified (9/17), including two patients with c.7271T>G (p.V2424G), a variant in the germline that is associated with increased familial cancer risk. Four (4/17) patients had a family history of lung cancer, among which three patients had ATM gene variants suspected to be germline in origin. In three other patients with BRCA1/2 or PALB2 gene variants who had undergone germline testing, the variants were confirmed to be germline; lung cancer was the sentinel cancer in two of these patients with a BRCA1 or PALB2 variant.

Conclusions: Genomic variants in the HR repair pathway identified in tumor-only sequencing and occurring at higher VAFs (i.e., ≥30%) may suggest a germline origin. Correlating with personal and family history, a subset of these variants is also suggested to be associated with familial cancer risks. Patient age, smoking history and driver mutation status are expected to be a poor screening tool in identifying these patients. Finally, the relative enrichment for ATM variants in our cohort suggests a possible association between ATM mutation and lung cancer risk.

Keywords: ATM; BRCA1; BRCA2; Lung cancer; homologous recombination (HR).