Multifunctional hybrid hydrogel for the prevention of post-surgery tumor recurrence

Am J Cancer Res. 2023 Jun 15;13(6):2504-2516. eCollection 2023.

Abstract

In this study, we present a multifunctional hybrid hydrogel (MFHH) for the prevention of postoperative tumor recurrence. MFHH consists of two components; component A - containing a gelatin-based cisplatin, which destroys the residual cancer after surgery, and component B - containing macroporous gelatin microcarriers (CultiSpher) loaded with freeze-dried bone marrow stem cells (BMSCs), which activates the wound healing process. We also evaluated the effects of MFHH in a subcutaneous Ehrlich tumor mouse model. MFHH acted as a local delivery system by directly supplying cisplatin to the tumor environment, resulting in excellent anti-cancer effects and minimal side effects. MFHH released cisplatin gradually to destroy the residual tumors, thereby preventing loco-regional recurrence. We have also demonstrated that BMSCs are able to inhibit residual tumor growth. Moreover, CultiSpher loaded with BMSCs acted as an injection 3D scaffold and easily filled the wound defect formed by tumor removal, and the paracrine factors of the freeze-dried BMSCs accelerated the wound healing process. The components of the MFHH can be used both separately and together. However, for the successful application of MFHH in clinical practice, it is necessary to study in more detail the role of paracrine factors of freeze-dried BMSCs in the inhibition or proliferation of residual cancer. These questions will be the focus of our future research.

Keywords: Ehrlich solid tumor; Multifunctional hybrid hydrogel; bone marrow stem cells; cisplatin mechanism of action; local drug delivery systems; macroporous gelatin microcarriers (CultiSpher).