Formation of oil-particle aggregates in the presence of marine algae

Environ Sci Process Impacts. 2023 Sep 20;25(9):1438-1448. doi: 10.1039/d3em00092c.

Abstract

After an oil spill, the formation of oil-particle aggregates (OPAs) is associated with the interaction between dispersed oil and marine particulate matter such as phytoplankton, bacteria and mineral particles. Until recently, the combined effect of minerals and marine algae in influencing oil dispersion and OPA formation has rarely been investigated in detail. In this paper, the impacts of a species of flagellate algae Heterosigma akashiwo on oil dispersion and aggregation with montmorillonite were investigated. This study has found that oil coalescence is inhibited due to the adhesion of algal cells on the droplet surface, causing fewer large droplets to be dispersed into the water column and small OPAs to form. Due to the role of biosurfactants in the algae and the inhibition of algae on the swelling of mineral particles, both the oil dispersion efficiency and oil sinking efficiency were improved, which reached 77.6% and 23.5%, respectively at an algal cell concentration (Ca) of 1.0 × 106 cells per mL and a mineral concentration of 300 mg L-1. The volumetric mean diameter of the OPAs decreased from 38.4 μm to 31.5 μm when Ca increased from 0 to 1.0 × 106 cells per mL. At higher turbulent energy, more oil tended to form larger OPAs. The findings may add knowledge about the fate and transport of spilled oil and provide fundamental data for oil spill migration modelling.

MeSH terms

  • Geologic Sediments
  • Minerals
  • Particulate Matter / analysis
  • Petroleum Pollution* / analysis
  • Petroleum* / analysis
  • Water Pollutants, Chemical* / analysis

Substances

  • Petroleum
  • Water Pollutants, Chemical
  • Particulate Matter
  • Minerals