Effect of calcium orthophosphate particle size and CaP:glass ratio on optical, mechanical and physicochemical characteristics of experimental composites

Dent Mater. 2023 Sep;39(9):770-778. doi: 10.1016/j.dental.2023.06.012. Epub 2023 Jul 7.

Abstract

Objective: Evaluate light transmittance (%T), color change (ΔE), degree of conversion (DC), bottom-to-top Knoop microhardness (KHN), flexural strength (BFS) and modulus (FM), water sorption/solubility (WS/SL) and calcium release of resin composites containing different dicalcium phosphate dihydrate (DCPD)-to-barium glass ratios (DCPD:BG) and DCPD particle sizes.

Methods: Ten resin-based composites (50 vol% inorganic fraction) were prepared using BG (0.4 µm) and DCPD particles (12 µm, 3 µm or mixture) with DCPD:BG of 1:3, 1:1 or 3:1. A composite without DCPD was used as a control. DC, KHN, %T and ΔE were determined in 2-mm thick specimens. BFS and FM were determined after 24 h. WS/SL was determined after 7 d. Calcium release was determined by coupled plasma optical emission spectroscopy. Data were analyzed by ANOVA/Tukey test (alpha: 0.05).

Results: %T was significantly reduced in composites with milled, compared to pristine DCPD (p < 0.001). ΔE > 3.3 were observed with DCPD:BG of 1:1 and 3:1 formulated with milled DCPD (p < 0.001). DC increased at 1:1 and 3:1 DCPD:BG (p < 0.001). All composites presented bottom-to-top KHN of at least 0.8. BFS was not affected by DCPD size but was strongly dependent on DCPD:BG (p < 0.001). Reductions in FM were observed with milled DCPD (p < 0.001). WS/SL increased with DCPD:BG (p < 0.001). At 3DCPD: 1BG, using small DCPD particles led to a 35 % increase in calcium release (p < 0.001).

Significance: A trade-off between strength and Ca2+ release was observed. In spite of its low strength, the formulation containing 3 DCPD: 1 glass and milled DCPD particles is preferred due to its superior Ca2+ release.

Keywords: Calcium orthophosphates; Degree of conversion; Flexural strength; Ion; Optical properties; Release; Resin composites.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcium*
  • Composite Resins / chemistry
  • Materials Testing
  • Particle Size
  • Phosphates*

Substances

  • Calcium
  • Phosphates
  • Composite Resins