Investigation of the structure-activity relationship at the N-terminal part of minigastrin analogs

EJNMMI Res. 2023 Jul 8;13(1):65. doi: 10.1186/s13550-023-01016-y.

Abstract

Background: Over the last years, several strategies have been reported to improve the metabolic stability of minigastrin analogs. However, currently applied compounds still reveal limited in vitro and in vivo stability. We thus performed a glycine scan at the N-terminus of DOTA-MGS5 (DOTA-D-Glu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal) to systematically analyze the peptide structure. We substituted N-terminal amino acids by simple PEG spacers and investigated in vitro stability in human serum. Furthermore, we evaluated different modifications on its tetrapeptide binding sequence (H-Trp-(N-Me)Nle-Asp-1-Nal-NH2).

Results: Affinity data of all glycine scan peptides were found to be in a low nanomolar range (4.2-8.5 nM). However, a truncated compound lacking the D-γ-Glu-Ala-Tyr sequence revealed a significant loss in CCK-2R affinity. Substitution of the D-γ-Glu-Ala-Tyr-Gly sequence of DOTA-γ-MGS5 (DOTA- D-γ-Glu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal-NH2) by polyethylene glycol (PEG) spacers of different length exhibited only a minor influence on CCK-2R affinity and lipophilicity. However, in vitro stability of the PEG-containing compounds was significantly decreased. In addition, we confirmed that the tetrapeptide sequence H-Trp-Asp-(N-Me)Nle-1-Nal-NH2 is indeed sufficient for high CCK-2R affinity.

Conclusion: We could demonstrate that a substitution of D-γ-Glu-Ala-Tyr-Gly by PEG spacers simplified the peptide structure of DOTA-MGS5 while high CCK-2R affinity and favorable lipophilicity were maintained. Nevertheless, further optimization with regard to metabolic stability must be carried out for these minigastrin analogs.

Keywords: Cholecystokinin-2 receptor (CCK-2R); Cholecystokinin-B receptor (CCK-BR); Medullary thyroid carcinoma (MTC); Minigastrin; Tetrapeptide.