Paenibacillus polymyxa YLC1: a promising antagonistic strain for biocontrol of Pseudomonas syringae pv. actinidiae, causing kiwifruit bacterial canker

Pest Manag Sci. 2023 Nov;79(11):4357-4366. doi: 10.1002/ps.7633. Epub 2023 Aug 1.

Abstract

Background: Kiwifruit bacterial canker (KBC) caused by Pseudomonas syringae pv. actinidiae (Psa) is the main limiting factor in the kiwifruit industry. This study aimed to identify bacterial strains with antagonistic activity against Psa, analyze antagonistically active substances and provide a new basis for the biological control of KBC.

Results: A total of 142 microorganisms were isolated from the rhizosphere soil of asymptomatic kiwifruit. Among them, an antagonistic bacterial strain was identified as Paenibacillus polymyxa YLC1 by 16S rRNA sequencing. KBC control by strain YLC1 (85.4%) was comparable to copper hydroxide treatment (81.8%) under laboratory conditions and field testing. Active substances of strain YLC1 were identified by genetic sequence analysis using antiSMASH. Six biosynthetic active compound gene clusters were identified as encoding ester peptide synthesis, such as polymyxins. An active fraction was purified and identified as polymyxin B1 using chromatography, hydrogen nuclear magnetic resonance (NMR), and liquid chromatography-mass spectrometry. In addition, polymyxin B1 also was found significantly to suppress the expression of T3SS-related genes, but did not affect the growth of Psa at low concentrations.

Conclusion: In this study, a biocontrol strain P. polymyxa YLC1 obtained from kiwifruit rhizosphere soil exhibited excellent control effects on KBC in vitro and in field tests. Its active compound was identified as polymyxin B1, which inhibits a variety of pathogenic bacteria. We conclude that P. polymyxa YLC1 is a biocontrol strain with excellent prospects for development and application. © 2023 Society of Chemical Industry.

Keywords: Paenibacillus polymyxa; Pseudomonas syringae pv. actinidiae; antagonistic mechanism; kiwifruit bacterial canker.