Electrochemical investigation of hydroxyapatite-lanthanum strontium cobalt ferrite composites (HA-LSCF) for SARS-CoV-2 aptasensors

RSC Adv. 2023 Jul 5;13(29):20209-20216. doi: 10.1039/d3ra01531a. eCollection 2023 Jun 29.

Abstract

The hydroxyapatite-lanthanum strontium cobalt ferrite (HA-LSCF) composite showed a good response on a screen-printed carbon electrode (SPCE) electrochemical aptasensor to detect SARS-CoV-2. SPCE/HA-LSCF with a thiolated aptamer has a strong affinity for the SARS-CoV-2 spike RBD protein. This occurs due to the binding of -SH to the HA-positive region. In the presence of LSCF, which is conductive, an increase in electron transfer from the redox system [Fe(CN)6]3-/4- occurs. The interaction of the aptamer with the RBD protein can be observed based on the decrease in the electron transfer process. As a result, the developed biosensor is highly sensitive to the SARS-CoV-2 spike RBD protein with a linear range of 0.125 to 2.0 ng mL-1, a detection limit of 0.012 ng mL-1, and a quantification limit of 0.040 ng mL-1. The analytical application of the aptasensor demonstrates its feasibility in the analysis of saliva or swab samples.