Target of selective auditory attention can be robustly followed with MEG

Sci Rep. 2023 Jul 6;13(1):10959. doi: 10.1038/s41598-023-37959-4.

Abstract

Selective auditory attention enables filtering of relevant acoustic information from irrelevant. Specific auditory responses, measurable by magneto- and electroencephalography (MEG/EEG), are known to be modulated by attention to the evoking stimuli. However, such attention effects have typically been studied in unnatural conditions (e.g. during dichotic listening of pure tones) and have been demonstrated mostly in averaged auditory evoked responses. To test how reliably we can detect the attention target from unaveraged brain responses, we recorded MEG data from 15 healthy subjects that were presented with two human speakers uttering continuously the words "Yes" and "No" in an interleaved manner. The subjects were asked to attend to one speaker. To investigate which temporal and spatial aspects of the responses carry the most information about the target of auditory attention, we performed spatially and temporally resolved classification of the unaveraged MEG responses using a support vector machine. Sensor-level decoding of the responses to attended vs. unattended words resulted in a mean accuracy of [Formula: see text] (N = 14) for both stimulus words. The discriminating information was mostly available 200-400 ms after the stimulus onset. Spatially-resolved source-level decoding indicated that the most informative sources were in the auditory cortices, in both the left and right hemisphere. Our result corroborates attention modulation of auditory evoked responses and shows that such modulations are detectable in unaveraged MEG responses at high accuracy, which could be exploited e.g. in an intuitive brain-computer interface.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Auditory Cortex* / physiology
  • Auditory Perception* / physiology
  • Electroencephalography / methods
  • Evoked Potentials, Auditory / physiology
  • Humans