Amyloid Aggregation and Liquid-Liquid Phase Separation from the Perspective of Phase Transitions

J Phys Chem B. 2023 Jul 20;127(28):6241-6250. doi: 10.1021/acs.jpcb.3c01426. Epub 2023 Jul 6.

Abstract

Amyloid aggregation describes the aberrant self-assembly of peptides into ordered fibrils characterized by cross-β spine cores and is associated with many neurodegenerative diseases and Type 2 diabetes. Oligomers, populated during the early stage of aggregation, are found to be more cytotoxic than mature fibrils. Recently, many amyloidogenic peptides have been reported to undergo liquid-liquid phase separation (LLPS)─a biological process important for the compartmentalization of biomolecules in living cells─prior to fibril formation. Understanding the relationship between LLPS and amyloid aggregation, especially the formation of oligomers, is essential for uncovering disease mechanisms and mitigating amyloid toxicity. In this Perspective, available theories and models of amyloid aggregation and LLPS are first briefly reviewed. By drawing analogies to gas, liquid, and solid phases in thermodynamics, a phase diagram of protein monomer, droplet, and fibril states separated by coexistence lines can be inferred. Due to the high free energy barrier of fibrillization kinetically delaying the formation of fibril seeds out of the droplets, a "hidden" monomer-droplet coexistence line extends into the fibril phase. Amyloid aggregation can then be described as the equilibration process from the initial "out-of-equilibrium" state of a homogeneous solution of monomers to the final equilibrium state of stable amyloid fibrils coexisting with monomers and/or droplets via the formation of metastable or stable droplets as the intermediates. The relationship between droplets and oligomers is also discussed. We suggest that the droplet formation of LLPS should be considered in future studies of amyloid aggregation, which may help to better understand the aggregation process and develop therapeutic strategies to mitigate amyloid toxicity.

Publication types

  • Review
  • Research Support, N.I.H., Extramural

MeSH terms

  • Amyloid beta-Peptides / chemistry
  • Amyloid* / chemistry
  • Amyloidogenic Proteins
  • Diabetes Mellitus, Type 2*
  • Humans
  • Peptides
  • Phase Transition

Substances

  • Amyloid
  • Amyloidogenic Proteins
  • Peptides
  • Amyloid beta-Peptides