Anti-Icing Mechanism for a Novel Slippery Aluminum Stranded Conductor

ACS Appl Mater Interfaces. 2023 Jul 19;15(28):34215-34229. doi: 10.1021/acsami.3c04797. Epub 2023 Jul 6.

Abstract

The icing of transmission conductor seriously threatens the safe operation of power grids. Slippery lubricant-infused porous surface (SLIPS) has shown great potential for anti-icing applications. However, aluminum stranded conductors have complex surfaces, and the current SLIPSs are almost prepared and studied on small flat plates. Herein, the construction of SLIPS on the conductor was realized through anodic oxidation and the anti-icing mechanism of the slippery conductor was studied. Compared to the untreated conductor, the SLIPS-conductor reduces the icing weight by 77% in the glaze icing test and shows very low ice-adhesion strength (7.0 kPa). The excellent anti-icing performance of the slippery conductor is attributed to the droplet impact dynamics, icing delay, and lubricant stability. The dynamic behavior of water droplets is most affected by the complex shape of the conductor surface. Specifically, the impact of the droplet on the conductor surface is asymmetric and the droplet can slide along the depression in low-temperature and high-humidity environments. The stable lubricant of SLIPS increases both the nucleation energy barriers and the heat transfer resistance, which greatly delays the freezing time of droplets. Besides, the nanoporous substrate, the compatibility of the substrate with the lubricant, and the lubricant characteristics contribute to the lubricant stability. This work provides theoretical and experimental guidance on anti-icing strategies for transmission lines.

Keywords: aluminum stranded conductor; anti-icing; droplet impact; mechanism; slippery surface.