The Role of Functional Groups in Tuning the Self-Assembly Modes and Physical Properties of Multicomponent Gels

Chempluschem. 2023 Aug;88(8):e202300302. doi: 10.1002/cplu.202300302.

Abstract

We have analyzed the nature and role of functional groups on the self-assembly modes and the physical properties of multicomponent gels with structurally similar individual components. The gelation properties of individual and mixed enantiomeric compounds of biphenyl bis-(amides) of alanine (BPA) or phenylalanine (BPP) methyl ester were analyzed in various solvent/solvent mixtures. Multicomponent gels were formed by mixing the enantiomeric BPP compounds at a lower concentration, but a higher concentration was required for mixed alanine-based BPA gels. The comparison of the mechanical strength of the individual and mixed BPP compounds indicated that the mixed BPP gels displayed enhanced mechanical strength (∼2-fold increase) in p-xylene, but a weaker gel was observed in DMSO/water. However, a reverse trend was observed for BPA gels, indicating the role of functional groups in the gel network formation. X-ray diffraction analysis of the gelator and the xerogels in the solid state confirmed the formation of co-assembled networks in mixed enantiomeric gels. The stability of the gels towards anions was evaluated by analyzing the anion induced stimuli-responsive properties. These results indicate the effective modeling of the functional groups of the individual components could lead to multicomponent gels with tunable properties.

Keywords: amino acids; enantiomers; multicomponent gels; self-assembly; sensing.