A novel colorimetric/fluorescent dual-signal probe based on silver nanoparticles functionalized with L-cysteine and rhodamine 6G derivatives for copper ion detection and cell imaging

Environ Res. 2023 Nov 1;236(Pt 1):116540. doi: 10.1016/j.envres.2023.116540. Epub 2023 Jul 3.

Abstract

The dual-signal probe utilizing functionalized silver nanoparticles (AgNPs) is a promising sensing tool. Herein, a novel colorimetric/fluorescent dual-signal probe (AgNPs-L-Cys-Rh6G2) was fabricated for copper ion (Cu2+) detection and cell imaging by using L-cysteine as a "bridge" to connect AgNPs and rhodamine 6G derivatives. The AgNPs-L-Cys-Rh6G2 probe exhibits a dual-signal response to Cu2+ due to Rh6G2 hydrolysis, resulting in a high fluorescence response and a significant change in color from light yellow to pink under sunlight. The linear detection ranges of the AgNPs-L-Cys-Rh6G2 probe for Cu2+ were 100-450 μM and 150-650 μM using fluorescent and colorimetry methods, respectively. The detection limits were as low as 0.169 μM and 1.36 μM, respectively. Meanwhile, the proposed probe was applied to detect Cu2+ in the actual sediment with satisfactory recovery and low relative standard deviation. Furthermore, the probe was further employed for fluorescence imaging in HeLa cells. In brief, the developed AgNPs-L-Cys-Rh6G2 sensing platform can be used for simultaneous Cu2+ determination and cell imaging.

Keywords: (L)-cysteine; Cell imaging; Copper ion; Dual-signal probe; Rhodamine 6G derivatives; Silver nanoparticles.