Predicting COVID-19 Infected Individuals in a Defined Population from Wastewater RNA Data

ACS ES T Water. 2022 Nov 11;2(11):2225-2232. doi: 10.1021/acsestwater.2c00105. Epub 2022 Jul 12.

Abstract

Wastewater surveillance of SARS-CoV-2 RNA has become an important tool for tracking the presence of the virus and serving as an early indicator for the onset of rapid transmission. Nevertheless, wastewater data are still not commonly used to predict the number of infected individuals in a sewershed. The main objective of this study was to calibrate a susceptible-exposed-infectious-recovered (SEIR) model using RNA copy rates in sewage (i.e., gene copies per liter times flow rate) and the number of SARS-CoV-2 saliva-test-positive infected individuals in a university student population that was subject to repeated weekly testing during the Spring 2021 semester. A strong correlation was observed between the RNA copy rates and the number of infected individuals. The parameter in the SEIR model that had the largest impact on calibration was the maximum shedding rate, resulting in a mean value of 7.72 log10 genome copies per gram of feces. Regressing the saliva-test-positive infected individuals on predictions from the SEIR model based on the RNA copy rates yielded a slope of 0.87 (SE=0.11), which is statistically consistent with a 1:1 relationship between the two. These findings demonstrate that wastewater surveillance of SARS-CoV-2 can be used to estimate the number of infected individuals in a sewershed.

Keywords: COVID-19; SARS-CoV-2; SEIR model; Wastewater-based epidemiology; pandemic.