Genome engineering of Kluyveromyces marxianus for high D-( -)-lactic acid production under low pH conditions

Appl Microbiol Biotechnol. 2023 Aug;107(16):5095-5105. doi: 10.1007/s00253-023-12658-2. Epub 2023 Jul 5.

Abstract

Saccharomyces cerevisiae is the workhorse of fermentation industry. Upon engineering for D-lactate production by a series of gene deletions, this yeast had deficiencies in cell growth and D-lactate production at high substrate concentrations. Complex nutrients or high cell density were thus required to support growth and D-lactate production with a potential to increase medium and process cost of industrial-scale D-lactate production. As an alternative microbial biocatalyst, a Crabtree-negative and thermotolerant yeast Kluyveromyces marxianus was engineered in this study to produce high titer and yield of D-lactate at a lower pH without growth defects. Only pyruvate decarboxylase 1 (PDC1) gene was replaced by a codon-optimized bacterial D-lactate dehydrogenase (ldhA). Ethanol, glycerol, or acetic acid was not produced by the resulting strain, KMΔpdc1::ldhA. Aeration rate at 1.5 vvm and culture pH 5.0 at 30 °C provided the highest D-lactate titer of 42.97 ± 0.48 g/L from glucose. Yield and productivity of D-lactate, and glucose-consumption rate were 0.85 ± 0.01 g/g, 0.90 ± 0.01 g/(L·h), and 1.06 ± 0.00 g/(L·h), respectively. Surprisingly, D-lactate titer, productivity, and glucose-consumption rate of 52.29 ± 0.68 g/L, 1.38 ± 0.05 g/(L·h), and 1.22 ± 0.00 g/(L·h), respectively, were higher at 42 °C compared to 30 °C. Sugarcane molasses, a low-value carbon, led to the highest D-lactate titer and yield of 66.26 ± 0.81 g/L and 0.91 ± 0.01 g/g, respectively, in a medium without additional nutrients. This study is a pioneer work of engineering K. marxianus to produce D-lactate at the yield approaching theoretical maximum using simple batch process. Our results support the potential of an engineered K. marxianus for D-lactate production on an industrial scale. KEY POINTS: • K. marxianus was engineered by deleting PDC1 and expressing codon-optimized D-ldhA. • The strain allowed high D-lactate titer and yield under pH ranging from 3.5 to 5.0. • The strain produced 66 g/L D-lactate at 30 °C from molasses without any additional nutrients.

Keywords: Crabtree-negative yeast; D-lactic acid; Kluyveromyces marxianus; Sugarcane molasses; Thermotolerant yeast.

MeSH terms

  • Fermentation
  • Glucose
  • Hydrogen-Ion Concentration
  • Kluyveromyces* / genetics
  • Kluyveromyces* / metabolism
  • L-Lactate Dehydrogenase / metabolism
  • Lactic Acid*
  • Pyruvate Decarboxylase / genetics
  • Pyruvate Decarboxylase / metabolism
  • Saccharomyces cerevisiae / metabolism

Substances

  • Lactic Acid
  • L-Lactate Dehydrogenase
  • Glucose
  • Pyruvate Decarboxylase

Supplementary concepts

  • Kluyveromyces marxianus