Immunogenicity and efficacy of a novel multi-patch SARS-CoV-2/COVID-19 vaccine candidate

Front Immunol. 2023 Jun 19:14:1160065. doi: 10.3389/fimmu.2023.1160065. eCollection 2023.

Abstract

Introduction: While there has been considerable progress in the development of vaccines against SARS-CoV-2, largely based on the S (spike) protein of the virus, less progress has been made with vaccines delivering different viral antigens with cross-reactive potential.

Methods: In an effort to develop an immunogen with the capacity to induce broad antigen presentation, we have designed a multi-patch synthetic candidate containing dominant and persistent B cell epitopes from conserved regions of SARS-CoV-2 structural proteins associated with long-term immunity, termed CoV2-BMEP. Here we describe the characterization, immunogenicity and efficacy of CoV2-BMEP using two delivery platforms: nucleic acid DNA and attenuated modified vaccinia virus Ankara (MVA).

Results: In cultured cells, both vectors produced a main protein of about 37 kDa as well as heterogeneous proteins with size ranging between 25-37 kDa. In C57BL/6 mice, both homologous and heterologous prime/boost combination of vectors induced the activation of SARS-CoV-2-specific CD4 and CD8 T cell responses, with a more balanced CD8+ T cell response detected in lungs. The homologous MVA/MVA immunization regimen elicited the highest specific CD8+ T cell responses in spleen and detectable binding antibodies (bAbs) to S and N antigens of SARS-CoV-2. In SARS-CoV-2 susceptible k18-hACE2 Tg mice, two doses of MVA-CoV2-BMEP elicited S- and N-specific bAbs as well as cross-neutralizing antibodies against different variants of concern (VoC). After SARS-CoV-2 challenge, all animals in the control unvaccinated group succumbed to the infection while vaccinated animals with high titers of neutralizing antibodies were fully protected against mortality, correlating with a reduction of virus infection in the lungs and inhibition of the cytokine storm.

Discussion: These findings revealed a novel immunogen with the capacity to control SARS-CoV-2 infection, using a broader antigen presentation mechanism than the approved vaccines based solely on the S antigen.

Keywords: B and T cell immune responses; SARS-CoV-2; binding and neutralizing antibodies; efficacy; mice studies; multi-patch vaccine; poxvirus MVA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • COVID-19 Vaccines
  • COVID-19* / prevention & control
  • Genetic Vectors
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • SARS-CoV-2
  • Vaccinia virus / genetics
  • Viral Vaccines*

Substances

  • COVID-19 Vaccines
  • Viral Vaccines

Supplementary concepts

  • Modified Vaccinia Ankara virus

Grants and funding

This research was supported by La Caixa Banking Foundation grant CF01-00008, Spanish Ministry of Science and Innovation (MCIN)/Spanish Research Agency grant PID2020-117425RB-C22, Fondo COVID-19 grant COV20/00151 (Spanish Health Ministry and Instituto de Salud Carlos III), CSIC grant 2020E84 and Ferrovial donations (to ME).