Novel pyrimidine Schiff bases and their selenium-containing nanoparticles as dual inhibitors of CDK1 and tubulin polymerase: design, synthesis, anti-proliferative evaluation, and molecular modelling

J Enzyme Inhib Med Chem. 2023 Dec;38(1):2232125. doi: 10.1080/14756366.2023.2232125.

Abstract

Nanotechnology-based strategies can overcome the limitations of conventional cancer therapies. Hence, novel series of pyrimidine Schiff bases (4-9) were employed in the synthesis of selenium nanoparticle forms (4NPs-9NPs). All selenium nano-sized forms exerted greater inhibitions than normal-sized compounds, far exceeding 5-fluorouracil activity. Compound 4 showed effective anti-proliferative activity against MCF-7(IC50 3.14 ± 0.04 µM), HepG-2(IC50 1.07 ± 0.03 µM), and A549(IC50 1.53 ± 0.01 µM) cell lines, while its selenium nanoform 4NPs showed excellent inhibitory effects, with efficacy increased by 96.52%, 96.45%, and 93.86%, respectively. Additionally, 4NPs outperformed 4 in selectivity against the Vero cell line by 4.5-fold. Furthermore, 4NPs exhibited strong inhibition of CDK1(IC50 0.47 ± 0.3 µM) and tubulin polymerase(IC50 0.61 ± 0.04 µM), outperforming 4 and being comparable to roscovitine (IC50 0.27 ± 0.03 µM) and combretastatin-A4(IC50 0.25 ± 0.01 µM), respectively. Moreover, both 4 and 4NPs arrested the cell cycle at G0/G1 phase and significantly forced the cells towards apoptosis. Molecular docking demonstrated that 4 and 4NPs were able to inhibit CDK1 and tubulin polymerase binding sites.

Keywords: Anti-proliferative; cyclin-dependent kinase 1; pyrimidine; selenium nanoparticles; tubulin polymerase.

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Cell Line, Tumor
  • Cell Proliferation
  • Drug Screening Assays, Antitumor
  • Molecular Docking Simulation
  • Molecular Structure
  • Pyrimidines / chemistry
  • Schiff Bases / chemistry
  • Selenium* / pharmacology
  • Structure-Activity Relationship
  • Tubulin / metabolism

Substances

  • Antineoplastic Agents
  • Selenium
  • Tubulin
  • Schiff Bases
  • Pyrimidines

Grants and funding

This research received no funding from public, commercial, or not-for-profit funding agencies.