Molecular modeling and simulation of transition metal-doped molybdenum disulfide biomarkers in exhaled gases for early detection of lung cancer

J Mol Model. 2023 Jul 5;29(8):225. doi: 10.1007/s00894-023-05638-w.

Abstract

Background: The presence of volatile organic compounds (VOCs) in the exhaled breath of lung cancer patients is the only available source for detecting the disease at its initial stage. Exhaled breath analysis depends purely on the performance of the biosensors. The interaction between VOCs and pristine MoS2 is repulsive in nature. Therefore, modifying MoS2 via surficial adsorption of the transition metal nickel is of prime importance. The surficial interaction of six VOCs with Ni-doped MoS2 led to substantial variations in the structural and optoelectronic properties compared to those of the pristine monolayer. The remarkable improvement in the conductivity, thermostability, good sensing response, and recovery time of the sensor exposed to six VOCs revealed that a Ni-doped MoS2 exhibits impressive properties for the detection of exhaled gases. Different temperatures have a significant impact on the recovery time. Humidity has no effect on the detection of exhaled gases upon exposure to VOCs. The obtained results may encourage the use of exhaled breath sensors by experimentalists and oncologists to enable potential advancements in lung cancer detection.

Methods: The surface adsorption of transition metal and its interaction with volatile organic compounds on a MoS2 surface was studied by using Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA). The pseudopotentials used in the SIESTA calculations are norm-conserving in their fully nonlocal forms. The atomic orbitals with finite support were used as a basis set, allowing unlimited multiple-zeta and angular momenta, polarization, and off-site orbitals. These basis sets are the key for calculating the Hamiltonian and overlap matrices in O(N) operations. The present hybrid density functional theory (DFT) is a combination of PW92 and RPBE methods. Additionally, the DFT+U approach was employed to accurately ascertain the coulombic repulsion in the transition elements.

Keywords: Gas sensing response; Gas sensors; Lung cancer diagnosis; Optoelectronic properties; Recovery time; Volatile organic compounds.

MeSH terms

  • Biomarkers
  • Humans
  • Lung Neoplasms* / diagnosis
  • Molybdenum
  • Volatile Organic Compounds* / analysis

Substances

  • molybdenum disulfide
  • Molybdenum
  • Volatile Organic Compounds
  • Biomarkers