Performance and micro-pacing strategies in sit para-biathlon

J Sports Sci. 2023 Jun;41(7):646-653. doi: 10.1080/02640414.2023.2231770. Epub 2023 Jul 4.

Abstract

This study investigated micro-pacing strategies during sit para-biathlon. Six elite sit para-biathletes wore a positioning system device during the world-championships in three different competition formats (Sprint, Middle-distance, and Long-distance). Total Skiing Time (TST), penalty-time, shooting-time, and Total Race Time (TRT) were analysed. One-way analyses of variance were used to compare the relative contributions of TST, penalty-time, and shooting-time to TRT across the three race formats. Statistical parametric mapping (SPM) was used to determine the course positions (clusters) where instantaneous skiing speed was significantly associated with TST. The contribution of TST to TRT was lower for the Long-distance (80 ± 6%) compared to the Sprint (86 ± 5%) and Middle-distance (86 ± 3%) races, however this difference was not statistically significant (p > 0.05). The proportional contribution of penalty-time to TRT was significantly greater (p < 0.05) for the Long-distance (13 ± 6%) compared to the Sprint (5 ± 4%) and Middle-distance (4 ± 3%) races. Statistical parametric mapping (SPM) revealed specific clusters where instantaneous skiing speed was significantly associated with TST. For example, over all laps during the Long-distance race, the fastest athlete gained 6.5 s over the slowest athlete in the section with the steepest uphill. Overall, these findings can provide insights into pacing strategies and help para-biathlon coaches and athletes optimise training programmes to improve performance.

Keywords: GNSS; para skiing; para sport; statistical parametric mapping; tactics.

MeSH terms

  • Athletes
  • Athletic Performance*
  • Environment
  • Humans
  • Skiing*