Imaging temperature and thickness of thin planar liquid water jets in vacuum

Struct Dyn. 2023 Jun 27;10(3):034901. doi: 10.1063/4.0000188. eCollection 2023 May.

Abstract

We present spatially resolved measurements of the temperature of a flat liquid water microjet for varying ambient pressures, from vacuum to 100% relative humidity. The entire jet surface is probed in a single shot by a high-resolution infrared camera. Obtained 2D images are substantially influenced by the temperature of the apparatus on the opposite side of the infrared camera; a protocol to correct for the thermal background radiation is presented. In vacuum, we observe cooling rates due to water evaporation on the order of 105 K/s. For our system, this corresponds to a temperature decrease in approximately 15 K between upstream and downstream positions of the flowing leaf. Making reasonable assumptions on the absorption of the thermal background radiation in the flatjet, we can extend our analysis to infer a thickness map. For a reference system, our value for the thickness is in good agreement with the one reported from white light interferometry.