Transcranial stimulation of alpha oscillations modulates brain state dynamics in sustained attention

bioRxiv [Preprint]. 2023 Aug 29:2023.05.27.542583. doi: 10.1101/2023.05.27.542583.

Abstract

The brain operates an advanced complex system to support mental activities. Cognition is thought to emerge from dynamic states of the complex brain system, which are organized spatially through large-scale neural networks and temporally via neural synchrony. However, specific mechanisms underlying these processes remain obscure. Applying high-definition alpha-frequency transcranial alternating-current stimulation (HD α-tACS) in a continuous performance task (CPT) during functional resonance imaging (fMRI), we causally elucidate these major organizational architectures in a key cognitive operation-sustained attention. We demonstrated that α-tACS enhanced both electroencephalogram (EEG) alpha power and sustained attention, in a correlated fashion. Akin to temporal fluctuations inherent in sustained attention, our hidden Markov modeling (HMM) of fMRI timeseries uncovered several recurrent, dynamic brain states, which were organized through a few major neural networks and regulated by the alpha oscillation. Specifically, during sustain attention, α-tACS regulated the temporal dynamics of the brain states by suppressing a Task-Negative state (characterized by activation of the default mode network/DMN) and Distraction state (with activation of the ventral attention and visual networks). These findings thus linked dynamic states of major neural networks and alpha oscillations, providing important insights into systems-level mechanisms of attention. They also highlight the efficacy of non-invasive oscillatory neuromodulation in probing the functioning of the complex brain system and encourage future clinical applications to improve neural systems health and cognitive performance.

Keywords: Attention; Biological sciences; Cognitive neuroscience; Computational neuroscience; Dynamical systems; Human behaviour; Neuroscience; Psychology; Social science; complex systems; dynamics; hidden states; non-invasive brain stimulation (NIBS); simultaneous fMRI-tACS.

Publication types

  • Preprint