In-Liquid Plasma-Mediated Manganese Oxide Electrocatalysts for Quasi-Industrial Water Oxidation and Selective Dehydrogenation

ACS Nano. 2023 Jul 25;17(14):14043-14052. doi: 10.1021/acsnano.3c04296. Epub 2023 Jul 3.

Abstract

The production of renewable feedstocks through the coupled oxygen evolution reaction (OER) with selective organic oxidation requires a perfect balance in the choice of a catalyst and its synthesis access, morphology, and catalytic activity. Herein we report a rapid in-liquid plasma approach to produce a hierarchical amorphous birnessite-type manganese oxide layer on 3D nickel foam. The as-prepared anode exhibits an OER activity with overpotentials of 220, 250, and 270 mV for 100, 500, and 1000 mA·cm-2, respectively, and can spontaneously be paired with chemoselective dehydrogenation of benzylamine under both ambient and industrial (6 M KOH, 65 °C) alkaline conditions. The in-depth ex-situ and in-situ characterization unequivocally demonstrate the intercalation of potassium in the birnessite-type phase with prevalent MnIII states as an active structure, which displays a trade-off between porous morphology and bulk volume catalytic activity. Further, a structure-activity relationship is realized based on the cation size and structurally similar manganese oxide polymorphs. The presented method is a substantial step forward in developing a robust MnOx catalyst for combining effective industrial OER and value-added organic oxidation.

Keywords: in-situ analysis; industrial activity; manganese oxide; organic transformation; water oxidation.