The Use of Machine Learning for Image Analysis Artificial Intelligence in Clinical Microbiology

J Clin Microbiol. 2023 Sep 21;61(9):e0233621. doi: 10.1128/jcm.02336-21. Epub 2023 Jul 3.

Abstract

The growing transition to digital microbiology in clinical laboratories creates the opportunity to interpret images using software. Software analysis tools can be designed to use human-curated knowledge and expert rules, but more novel artificial intelligence (AI) approaches such as machine learning (ML) are being integrated into clinical microbiology practice. These image analysis AI (IAAI) tools are beginning to penetrate routine clinical microbiology practice, and their scope and impact on routine clinical microbiology practice will continue to grow. This review separates the IAAI applications into 2 broad classification categories: (i) rare event detection/classification or (ii) score-based/categorical classification. Rare event detection can be used for screening purposes or for final identification of a microbe including microscopic detection of mycobacteria in a primary specimen, detection of bacterial colonies growing on nutrient agar, or detection of parasites in a stool preparation or blood smear. Score-based image analysis can be applied to a scoring system that classifies images in toto as its output interpretation and examples include application of the Nugent score for diagnosing bacterial vaginosis and interpretation of urine cultures. The benefits, challenges, development, and implementation strategies of IAAI tools are explored. In conclusion, IAAI is beginning to impact the routine practice of clinical microbiology, and its use can enhance the efficiency and quality of clinical microbiology practice. Although the future of IAAI is promising, currently IAAI only augments human effort and is not a replacement for human expertise.

Keywords: artificial intelligence; clinical microbiology; machine learning.

Publication types

  • Review

MeSH terms

  • Artificial Intelligence*
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Machine Learning*
  • Software
  • Urinalysis