MiR-590-5p promotes cisplatin resistance via targeting hMSH2 in ovarian cancer

Mol Biol Rep. 2023 Aug;50(8):6819-6827. doi: 10.1007/s11033-023-08599-8. Epub 2023 Jul 1.

Abstract

Objective: The mechanisms of ovarian cancer generate chemotherapy resistance are still unclear. This study aimed to explore the role of microRNA (miR)-590-5p in regulating hMSH2 expression and cisplatin resistance in ovarian cancer.

Methods: MiR-590-5p was identified as a regulator of hMSH2 with miRDB database and Target Scan database. Then cisplatin sensitive cell line (SKOV3) and resistant cell line (SKOV3-DDP) of ovarian cancer were cultured for cell functional assay and molecular biology assay. The expression levels of MiR-590-5p and hMSH2 were compared between the two cell lines. Dual luciferase reporter assay was used to verify the targeted regulatory relationship between miR-590-5p and hMSH2. CCK-8 assay and cell apoptosis assay were utilized to assess the role of MiR-590-5p and hMSH2 in cell viability under cisplatin.

Results: The expression of hMSH2 was significantly decreased, and miR-590-5p was significantly up-regulated in SKOV3-DDP. Up-regulation of hMSH2 weakened the viability of SKOV3 and SKOV3-DDP cell under cisplatin. Transfection with miR‑590-5p mimics reduced the expression of hMSH2 and enhanced the viability of ovarian cancer cells under cisplatin, whereas inhibition of miR‑590-5p increased the expression of hMSH2, and decreased ovarian cancer cells' viability under cisplatin. Furthermore, luciferase reporter assay showed that hMSH2 was a direct target of miR-590-5p.

Conclusion: The present study demonstrates that miR‑590-5p promotes cisplatin resistance of ovarian cancer via negatively regulating hMSH2 expression. Inhibition of miR‑590-5p decreases ovarian cancer cells' viability under cisplatin. Thus miR‑590-5p and hMSH2 may serve as therapeutic targets for cisplatin resistant ovarian cancer.

Keywords: Cisplatin resistance; Ovarian cancer; hMSH2; miR-590-5p.

MeSH terms

  • Cell Line, Tumor
  • Cell Proliferation
  • Cisplatin / pharmacology
  • Cisplatin / therapeutic use
  • Drug Resistance, Neoplasm / genetics
  • Female
  • Humans
  • MicroRNAs* / metabolism
  • Ovarian Neoplasms* / drug therapy
  • Ovarian Neoplasms* / genetics
  • Ovarian Neoplasms* / metabolism

Substances

  • Cisplatin
  • MicroRNAs
  • MIRN590 microRNA, human
  • MSH2 protein, human