AAV9-Tspyl2 gene therapy retards bleomycin-induced pulmonary fibrosis by modulating downstream TGF-β signaling in mice

Cell Death Dis. 2023 Jun 30;14(6):389. doi: 10.1038/s41419-023-05889-8.

Abstract

Idiopathic pulmonary fibrosis (IPF) is a devastating fibrotic lung disease characterized by scarring and destruction of the lung architecture, with limited treatment options. Targeted gene therapy to restore cell division autoantigen-1 (CDA1) expression may be a potential treatment approach to delay the progression of pulmonary fibrosis (PF). Here, we focused on CDA1, which was significantly decreased in human IPF, in a mouse model of bleomycin (BLM)-induced PF, and in transforming growth factor (TGF-β)-challenged lung fibroblasts. In vitro, CDA1 overexpression by lentivirus infection in human embryonic lung fibroblasts (HFL1 cells) inhibited the production of pro-fibrotic and pro-inflammatory cytokines, lung fibroblast-to-myofibroblast transition, and extracellular matrix protein expression induced by exogenous TGF-β1 treatment, whereas CDA1 knockdown with small interfering RNA promoted this effect. CDA1 overexpression also inhibited cell proliferation and migration. In a mouse model of BLM-induced PF, we provided novel evidence that the intratracheal delivery of adeno-associated virus serotype 9 carrying the mouse Tspyl2 gene reduced lung tissue inflammation and fibrosis. Mechanistically, CDA1, as a transcription regulator, could repress the TGF-β signal transduction in vivo and in vitro. In conclusion, our results show that Tspyl2 gene therapy plays an antifibrotic role by inhibiting the lung fibroblast-to-myofibroblast transition and downstream TGF-β/Smad3 signaling transduction in BLM-induced PF in mice, suggesting that CDA1 is an appropriate and promising therapeutic target for PF.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bleomycin
  • Cell Proliferation
  • Cicatrix
  • Disease Models, Animal
  • Genetic Therapy
  • Humans
  • Idiopathic Pulmonary Fibrosis* / chemically induced
  • Idiopathic Pulmonary Fibrosis* / genetics
  • Idiopathic Pulmonary Fibrosis* / therapy
  • Inflammation
  • Mice

Substances

  • Bleomycin