A methodology for incorporating a photon-counting CT system into routine clinical use

J Appl Clin Med Phys. 2023 Aug;24(8):e14069. doi: 10.1002/acm2.14069. Epub 2023 Jun 30.

Abstract

Photon-counting computed tomography (PCCT) systems are increasingly available in the U.S. following Food and Drug Administration (FDA) approval of the first clinical PCCT system in Fall 2021. Consequently, there will be a need to incorporate PCCTs into existing fleets of traditional CT systems. The commissioning process of a PCCT was devised by evaluating the degree of agreement between the performance of the PCCT and that of established clinical CT systems. A PCCT system (Siemens NAEOTOM Alpha) was evaluated using the American College of Radiology(ACR) CT phantom (Gammex 464). The phantom was scanned on the system and on a 3rd Generation EID CT system (Siemens Force) at three clinical dose levels. Images were reconstructed across the range of available reconstruction kernels and Iterative Reconstruction (IR) strengths. Two image quality metrics-spatial resolution and noise texture-were calculated using AAPM TG233 software (imQuest), as well as a dose metric to achieve target image noise magnitude of 10 HU. For each pair of EID-PCCT kernel/IR strengths, the difference in metrics were calculated, weighted, and multiplied over all metrics to determine the concordance between systems. IR performance was characterized by comparing relative noise texture and reference dose as a function of IR strength for each system. In general, as kernel "sharpness" increased for each system, spatial resolution, noise spatial frequency, and reference dose increased. For a given kernel, EID reconstruction showed higher spatial resolution compared to PCCT in standard resolution mode. PCCT implementation of IR better preserved noise texture across all strengths compared to the EID, demonstrated by respective 20 and 7% shifts in noise texture from IR "Off" to IR "Max." Overall, the closest match for a given EID reconstruction kernel/IR strength was identified as a PCCT kernel with "sharpness" increased by 1 step and IR strength increased by 1-2 steps. Substantial dose reduction potential of up to 70% was found when targeting a constant noise magnitude.

Keywords: CT image quality; CT protocols; photon-counting CT.

MeSH terms

  • Benchmarking*
  • Drug Tapering
  • Humans
  • Phantoms, Imaging
  • Photons
  • Tomography, X-Ray Computed* / methods