Testing of the siderophore deferoxamine amended in hydrogels for the cleaning of iron corrosion

Eur Phys J Plus. 2023;138(6):569. doi: 10.1140/epjp/s13360-023-04159-y. Epub 2023 Jun 27.

Abstract

Bioderived alternatives to commonly used complexing agents for the cleaning of iron artworks are sought for their natural origin and better biodegradability. Indeed, complexing agents currently used for the removal of undesired corrosion products from iron artworks can be difficult to control and their environmental impact is often overlooked. This paper studies the use of siderophores, focusing on the ability of one of them, deferoxamine, to be employed as an active agent loaded in polysaccharides hydrogels, on corrosion phases. Preliminary tests were conducted on artificially aged steel samples and further studies were performed on naturally corroded steel to assess the most performing application parameters. Long-term behavior of cleaned surface was assessed. Cleaning outcomes were compared with those obtainable with disodium ethylenediaminetetraacetic acid using optical microscopy, colorimetry and atomic absorption spectroscopy as well as Infrared and Raman micro-spectroscopies. Among the different gelling agents evaluated, agar applied when hot and gellan gum prepared at room temperature were the most effective gel formulations and agar left few residues over the treated surfaces. The protocol was then tested on altered steel artifacts belonging to heritage institutions in France. Encouraging outcomes in the removal of iron corrosion phases with green approaches are here presented.