Ecological risk of galaxolide and its transformation product galaxolidone: evidence from the literature and a case study in Guangzhou waterways

Environ Sci Process Impacts. 2023 Aug 16;25(8):1337-1346. doi: 10.1039/d3em00139c.

Abstract

Galaxolidone (HHCB-lac) is a major transformation product of the commonly used synthetic musk galaxolide (HHCB) and is ubiquitous in the environment along with the parent compound. Although many studies have shown the harmful effects of HHCB, little attention has been paid to the potential ecological risk of HHCB-lac. Herein, we reviewed the concentrations and ratios of HHCB and HHCB-lac (HHCB-lac : HHCB) in different media reported in the literature, derived the predicted no-effect concentrations (PNECs) for the two compounds using ECOSAR predictions and species sensitivity distribution (SSD) estimates, and assessed their ecological risks in the aquatic environment. The literature data indicated that HHCB-lac and HHCB were generally present in the environment at ratios of 0.01-10. Using the derived PNECs (2.14 and 18.4 μg L-1 for HHCB and HHCB-lac, respectively), HHCB in the aquatic environment was assessed to have medium to high risks, while HHCB-lac was assessed to have low risks. Furthermore, we carried out a case study on the occurrence and ecological risks of HHCB and HHCB-lac in Guangzhou waterways. The concentrations of the two compounds in Guangzhou waterways ranged from 20 to 2620 ng L-1 and 3 to 740 ng L-1, respectively, and the ratios were in the range of 0.15 to 0.64. The field study data also showed medium to high risks of HHCB and low risks of HHCB-lac. Additionally, the endocrine effects of HHCB and HHCB-lac were confirmed by Endocrine Disruptome, which calls for greater scrutiny of the potential effects of HHCB and HHCB-lac on human health.

Publication types

  • Review

MeSH terms

  • Benzopyrans* / analysis
  • Humans
  • Sensitivity and Specificity
  • Water Pollutants, Chemical* / analysis
  • Water Pollutants, Chemical* / toxicity

Substances

  • galaxolide
  • Benzopyrans
  • Water Pollutants, Chemical