SARS-CoV-2 infection and pulmonary tuberculosis in children and adolescents: a case-control study

BMC Infect Dis. 2023 Jun 29;23(1):442. doi: 10.1186/s12879-023-08412-8.

Abstract

Background: The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pandemic has had an impact on the global tuberculosis (TB) epidemic but evidence on the possible interaction between SARS-CoV-2 and TB, especially in children and adolescents, remains limited. We aimed to evaluate the relationship between previous infection with SARS-CoV-2 and the risk of TB in children and adolescents.

Methods: An unmatched case-control study was conducted using SARS-CoV-2 unvaccinated children and adolescents recruited into two observational TB studies (Teen TB and Umoya), between November 2020 and November 2021, in Cape Town, South Africa. Sixty-four individuals with pulmonary TB (aged < 20 years) and 99 individuals without pulmonary TB (aged < 20 years) were included. Demographics and clinical data were obtained. Serum samples collected at enrolment underwent quantitative SARS-CoV-2 anti-spike immunoglobulin G (IgG) testing using the Abbott SARS-CoV-2 IgG II Quant assay. Odds ratios (ORs) for TB were estimated using unconditional logistic regression.

Results: There was no statistically significant difference in the odds of having pulmonary TB between those who were SARS-CoV-2 IgG seropositive and those who were seronegative (adjusted OR 0.51; 95% CI: 0.23-1.11; n = 163; p = 0.09). Of those with positive SARS-CoV-2 serology indicating prior infection, baseline IgG titres were higher in individuals with TB compared to those without TB (p = 0.04) and individuals with IgG titres in the highest tertile were more likely to have pulmonary TB compared to those with IgG levels in the lowest tertile (OR: 4.00; 95%CI: 1.13- 14.21; p = 0.03).

Conclusions: Our study did not find convincing evidence that SARS-CoV-2 seropositivity was associated with subsequent pulmonary TB disease; however, the association between magnitude of SARS-CoV-2 IgG response and pulmonary TB warrants further investigation. Future prospective studies, evaluating the effects of sex, age and puberty on host immune responses to M. tuberculosis and SARS-CoV-2, will also provide more clarity on the interplay between these two infections.

Keywords: Adolescents; Immunology; SARS-CoV-2; Tuberculosis.

MeSH terms

  • Adolescent
  • COVID-19*
  • Case-Control Studies
  • Child
  • Humans
  • Immunoglobulin G
  • Mycobacterium tuberculosis*
  • Pandemics
  • Prospective Studies
  • SARS-CoV-2
  • South Africa / epidemiology
  • Tuberculosis, Pulmonary* / epidemiology

Substances

  • Immunoglobulin G