A deep attention LSTM embedded aggregation network for multiple histopathological images

PLoS One. 2023 Jun 29;18(6):e0287301. doi: 10.1371/journal.pone.0287301. eCollection 2023.

Abstract

Recent advancements in computer vision and neural networks have facilitated the medical imaging survival analysis for various medical applications. However, challenges arise when patients have multiple images from multiple lesions, as current deep learning methods provide multiple survival predictions for each patient, complicating result interpretation. To address this issue, we developed a deep learning survival model that can provide accurate predictions at the patient level. We propose a deep attention long short-term memory embedded aggregation network (DALAN) for histopathology images, designed to simultaneously perform feature extraction and aggregation of lesion images. This design enables the model to efficiently learn imaging features from lesions and aggregate lesion-level information to the patient level. DALAN comprises a weight-shared CNN, attention layers, and LSTM layers. The attention layer calculates the significance of each lesion image, while the LSTM layer combines the weighted information to produce an all-encompassing representation of the patient's lesion data. Our proposed method performed better on both simulated and real data than other competing methods in terms of prediction accuracy. We evaluated DALAN against several naive aggregation methods on simulated and real datasets. Our results showed that DALAN outperformed the competing methods in terms of c-index on the MNIST and Cancer dataset simulations. On the real TCGA dataset, DALAN also achieved a higher c-index of 0.803±0.006 compared to the naive methods and the competing models. Our DALAN effectively aggregates multiple histopathology images, demonstrating a comprehensive survival model using attention and LSTM mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Memory, Long-Term*
  • Neural Networks, Computer*

Grants and funding

This material was based on work partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2022M3J6A1084843, No. NRF-2021R1C1C1013936). This work was also partially supported by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant (No.2020-0-01441, No.RS-2022-00155857, Artificial Intelligence Convergence Research Center (Chungnam National University)).The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.