Spatially-variant image deconvolution for photoacoustic tomography

Opt Express. 2023 Jun 19;31(13):21641-21657. doi: 10.1364/OE.486846.

Abstract

Photoacoustic tomography (PAT) system can reconstruct images of biological tissues with high resolution and contrast. However, in practice, the PAT images are usually degraded by spatially variant blur and streak artifacts due to the non-ideal imaging conditions and chosen reconstruction algorithms. Therefore, in this paper, we propose a two-phase restoration method to progressively improve the image quality. In the first phase, we design a precise device and measuring method to obtain spatially variant point spread function samples at preset positions of the PAT system in image domain, then we adopt principal component analysis and radial basis function interpolation to model the entire spatially variant point spread function. Afterwards, we propose a sparse logarithmic gradient regularized Richardson-Lucy (SLG-RL) algorithm to deblur the reconstructed PAT images. In the second phase, we present a novel method called deringing which is also based on SLG-RL to remove the streak artifacts. Finally, we evaluate our method with simulation, phantom and in vivo experiments, respectively. All the results show that our method can significantly improve the quality of PAT images.