Iron necessity for chlamydospore germination in Fusarium oxysporum f. sp. cubense TR4

Biometals. 2023 Dec;36(6):1295-1306. doi: 10.1007/s10534-023-00519-4. Epub 2023 Jun 29.

Abstract

Fusarium wilt disease of banana, caused by the notorious soil-borne pathogen Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), is extremely difficult to manage. Manipulation of soil pH or application of synthetic iron chelators can suppress the disease through iron starvation, which inhibits the germination of pathogen propagules called chlamydospores. However, the effect of iron starvation on chlamydospore germination is largely unknown. In this study, scanning electron microscopy was used to assemble the developmental sequence of chlamydospore germination and to assess the effect of iron starvation and pH in vitro. Germination occurs in three distinct phenotypic transitions (swelling, polarized growth, outgrowth). Outgrowth, characterized by formation of a single protrusion (germ tube), occurred at 2 to 3 h, and a maximum value of 69.3% to 76.7% outgrowth was observed at 8 to 10 h after germination induction. Germination exhibited plasticity with pH as over 60% of the chlamydospores formed a germ tube between pH 3 and pH 11. Iron-starved chlamydospores exhibited polarized-growth arrest, characterized by the inability to form a germ tube. Gene expression analysis of rnr1 and rnr2, which encode the iron-dependent enzyme ribonucleotide reductase, showed that rnr2 was upregulated (p < 0.0001) in iron-starved chlamydospores compared to the control. Collectively, these findings suggest that iron and extracellular pH are crucial for chlamydospore germination in Foc TR4. Moreover, inhibition of germination by iron starvation may be linked to a different mechanism, rather than repression of the function of ribonucleotide reductase, the enzyme that controls growth by regulation of DNA synthesis.

Keywords: Germ tube; Outgrowth; Polarized; Quiescence; Ribonucleotide reductase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fusarium* / genetics
  • Iron
  • Plant Diseases / genetics
  • Ribonucleotide Reductases*
  • Soil

Substances

  • Iron
  • Soil
  • Ribonucleotide Reductases

Supplementary concepts

  • Fusarium oxysporum
  • Fusarium odoratissimum