Change in glomalin-related soil protein along latitudinal gradient encompassing subtropical and temperate blue carbon zones

Sci Total Environ. 2023 Oct 15:895:165035. doi: 10.1016/j.scitotenv.2023.165035. Epub 2023 Jun 26.

Abstract

Glomalin-related soil protein (GRSP), an abundant and eco-friendly bioproduct associated with arbuscular mycorrhizal fungi (AMF), contributes significantly to the soil particle aggregation and carbon sequestration. Although much research has been conducted on the storage of GRSP at different spatio-temporal scales in terrestrial ecosystems. However, the deposition of GRSP in large-scale coastal environments has not been revealed, which hinders an in-depth understanding of GRSP storage patterns and environmental controls, and this knowledge gap has become one of the key uncertainties in understanding the ecological functions of GRSP as blue carbon components in coastal environments. Therefore, we conducted large-scale experiments (spanning subtropical and warm temperate climate zones, coastlines over 2500 km) to test the relative contributions of environmental drivers that shape unique GRSP storage. In salt marshes of China, we found that the abundance of GRSP ranges from 0.29 mg g-1 to 1.10 mg g-1, and its concentration decreases with increasing latitude (R2 = 0.30, p < 0.01). The GRSP-C/SOC of salt marshes ranged from 4 % to 43 % and increased with the increase in latitude (R2 = 0.13, p < 0.05). The carbon contribution of GRSP does not follow the trend of increasing abundance, but is limited by the total amount of background organic carbon. In salt marsh wetlands, precipitation, clay content and pH are the main factors influencing GRSP storage. GRSP is positively correlated with precipitation (R2 = 0.42, p < 0.01) and clay content (R2 = 0.59, p < 0.01), but negatively correlated with pH (R2 = 0.48, p < 0.01). The relative contributions of the main factors to the GRSP differed across climatic zones. Soil properties, such as clay content and pH, explained 19.8 % of the GRSP in subtropical salt marshes (20°N < 34°N), however, in warm temperate salt marshes (34°N < 40°N), precipitation explained 18.9 % of the GRSP variation. Our study provides insight into the distribution and function of GRSP in coastal environments.

Keywords: Blue carbon; Coastal marsh; GRSP; Latitudinal gradients; Spartina alterniflora.

MeSH terms

  • Carbon / metabolism
  • Clay
  • Ecosystem
  • Fungal Proteins / metabolism
  • Mycorrhizae* / metabolism
  • Soil* / chemistry

Substances

  • Soil
  • Carbon
  • Fungal Proteins
  • Clay
  • glomalin