A new alignment device for standardization of marker placement on the hindfoot

Gait Posture. 2023 Jul:104:116-119. doi: 10.1016/j.gaitpost.2023.06.008. Epub 2023 Jun 16.

Abstract

Background: For multi-segment foot models, next to a (dorsal) heel marker, further markers are typically placed medially (MCL) and laterally (LCL) on the calcaneus. However, there is a lack of easily identifiable landmarks on the hindfoot limiting the repeatability of measurements. For a more consistent placement of these markers, an improved Hindfoot Alignment Device (HiAD) was developed.

Methods: With the HiAD, the position of the MCL and LCL can be individually scaled. Flexible bars allow the adaptation to foot deformities. Three rater placed markers with the HiAD four times on ten typical developed subjects (20 feet). Rigid segment residuals of the hindfoot were calculated and compared with the residuals when using the device of Simon et al. (2006) [12]. The variability of the placement of MCL, LCL and the clinical parameter medial arch were determined. For assessing the inter- and intra-rater reliability, intraclass correlation coefficient (ICC) and the standard error of measurement (SEM) were calculated.

Results: Rigid segment residuals of the hindfoot could be reduced by 70 % by using the HiAD. Largest inter-rater variability in the MCL and LCL placement was found in z-direction with less than 3.2 ± 2.7 mm and 3.8 ± 2.8 mm, respectively. Correspondingly, largest intra-rater variability was 3.4 ± 2.3 mm for LCL and 2.4 ± 1.9 mm for MCL, respectively. Regarding reliability ICC showed good to excellent results for the medial arch (interrater ICC 0.471-0.811).

Significance: The application of HiAD to place MCL and LCL appear to be a reliable method with robust marker positions and could be implemented in any multi segment foot model. However, further investigation would be helpful to determine the sensitivity of the marker positions in detecting hindfoot deformities.

Keywords: Calcaneus markers; Hindfoot Alignment Device; Marker placement; Multi segment foot model.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcaneus*
  • Foot
  • Foot Deformities*
  • Humans
  • Reference Standards
  • Reproducibility of Results