Effects of long-term microplastic pollution on soil heavy metals and metal resistance genes: Distribution patterns and synergistic effects

Ecotoxicol Environ Saf. 2023 Jun 26:262:115180. doi: 10.1016/j.ecoenv.2023.115180. Online ahead of print.

Abstract

Heavy metals (HMs) and microplastics (MPs) are two emerging factors threatening global food security. Whether long-term MPs pollution will affect the distribution of HMs and their resistance genes (MRGs) in soil is unknown. Here, metagenomic approach was used to decipher the fate of MRGs in cropland soils with long-term film MPs residues. Similar distribution pattern of MRGs was formed in long-term film MPs contaminated soil. A total of 202 MRG subtypes were detected, with resistance genes for Multimetal, Cu, and As being the most prevalent type of MRGs. MRGs formed a modular distribution of five clusters centered on MRGs including ruvB in long-term film MPs contaminated soil. MRGs also formed tight co-occurrence networks with mobile genetic elements (MGEs: integrons, insertions and plasmids). Redundancy analysis showed that HMs together with microbial communities and MGEs affected the distribution of MRGs in soil. Thirteen genera including Pseudomonas were identified as potential hosts for MRGs and MGEs. The research provides preliminary progress on the synergistic effect of HMs and MPs in affecting soil ecological security. The synergistic effect of MPs and HMs needs to be considered in the remediation of contaminated soils.

Keywords: Heavy metal resistance gene; Metagenomics; Microplastics; Plastic mulch film; Soil.