Exhaust aftertreatment device-derived ammonia emissions from conventional and hybrid light-duty gasoline vehicles over different driving cycles

J Hazard Mater. 2023 Sep 15:458:131914. doi: 10.1016/j.jhazmat.2023.131914. Epub 2023 Jun 22.

Abstract

Ammonia emissions from motor vehicles have great effect on air pollution and human health in urban areas. Recently, many countries have focus on ammonia emission measurement and control technologies for light-duty gasoline vehicles (LDGVs). To analyze ammonia emission characteristics, three conventional LDGVs and one hybrid electric light-duty vehicle (HEV) were evaluated over different driving cycles. The average ammonia emission factor at 23℃ was 4.5 ± 1.6 mg/km over Worldwide harmonized light vehicles test cycle (WLTC). Most ammonia emissions mainly concentrated in low and medium speed sections at cold-start stage, which were related to rich burn conditions. The increasing ambient temperatures led to the decrease of ammonia emissions, but high load caused by extremely elevated ambient temperature led to obvious ammonia emissions. The ammonia formation is also related to three-way catalytic converter (TWC) temperatures, and underfloor TWC catalyst could eliminate ammonia partly. The ammonia emission from HEV, which are significant less than LDGV, corresponded to the engine working state. The large temperature difference in the catalysts caused by power source shifts were the main reason. Exploring the effects of various factors on the ammonia emission is beneficial for revealing the instinct formation conditions, providing theoretical support for the future regulations.

Keywords: Ammonia emission; Hybrid electric light-duty vehicle; Light-duty gasoline vehicle; Rich burn; TWC catalyst.