Universal Single-Step Approach to the Immobilization of Cyclodextrins in a Supercritical Medium for Capturing Drug, Dye, and Metal Nanoclusters

Langmuir. 2023 Jul 11;39(27):9564-9578. doi: 10.1021/acs.langmuir.3c01143. Epub 2023 Jun 28.

Abstract

By utilizing nanoreactor-like structures, the immobilization of macromolecules such as calixarenes and cyclodextrins (CD) with bucket-like structures provides new possibilities for engineered surface-molecule systems. The practical use of any molecular system depends on the availability of a universal procedure for immobilizing molecules with torus-like structures on various surfaces while maintaining identical operating parameters. There are currently several steps, including toxic solvent-based approaches using modified β-CD to covalently attach to surfaces with multistep reactions. However, the existing multistep process results in molecular orientation, restricts the accessibility of the hydrophobic barrel of β-CD's for practical use, and is effectively unable to use the surfaces immobilized with β-CD for a variety of applications. In this study, it was demonstrated that β-CD attached to the oxide-based semiconductor and metal surfaces through a condensation reaction between the hydroxyl-terminated oxide-based semiconductor/metal oxide and β-CD in supercritical carbon dioxide (SCCO2) as a medium. The primary benefit of SCCO2-assisted grafting of unmodified β-CD on various oxide-based metal and semiconductor surfaces is that it is a simple, efficient, one-step process and that it is ligand-free, scalable, substrate-independent, and uses minimal energy. Various physical microscopy and chemical spectroscopic methods were used to analyze the grafted β-CD oligomers. The application of the grafted β-CD films was demonstrated by the immobilization of rhodamine B (RhB), a dye, and dopamine, a drug. The in situ nucleation and growth of silver nanoclusters (AgNCs) in the molecular systems were studied for antibacterial and tribological properties by utilizing the guest-host interaction ability of β-CD.