Evaluation of near-infrared spectroscopy as a contactless method for health monitoring of resin-based coating materials applied to concrete surfaces

PLoS One. 2023 Jun 28;18(6):e0287918. doi: 10.1371/journal.pone.0287918. eCollection 2023.

Abstract

The surfaces of concrete structures are often coated with protective materials to minimize corrosion and weathering-based deterioration. Therefore, it is important to monitor the aging of the coating materials and their overall condition to extend the service lifetime of the structure effectively. Near-infrared spectroscopy (NIRS) is a contactless, nondestructive, rapid, and convenient method for material characterization; therefore, it is useful for onsite inspection of coating materials. Hence, in this study, we attempt to determine whether NIRS can be used for simple inspection for health monitoring of organic resin-based coating materials. In addition to identifying different severities of peeling damage, we characterize the ultraviolet-induced deterioration of coating materials with different thicknesses using diffuse reflection spectra acquired in the near-infrared wavelength region. For independent comparison with the NIR spectra, the state of the coating materials on the mortar specimens was analyzed using a combination of Fourier-transform infrared spectroscopy and scanning electron microscopy, while the state of the underlying mortar specimens was analyzed using permeability and salt-water immersion tests. The results confirm that the NIRS could detect the degradation of coating materials at early stages of deterioration before their permeability had been affected. NIRS offers the possibility of intermittent monitoring of coating deterioration. In addition, because the NIR spectrometer is portable, it can help in inspecting high-rise areas and areas that are difficult to reach. Therefore, we believe that NIRS is a simple, safe, and inexpensive method for inspection of surface coating materials.

MeSH terms

  • Spectroscopy, Fourier Transform Infrared
  • Spectroscopy, Near-Infrared* / methods

Grants and funding

The authors received no specific funding for this work.