Constructing Oxygen Vacancies via Engineering Heterostructured Fe3 C/Fe3 O4 Catalysts for Electrochemical Ammonia Synthesis

Angew Chem Int Ed Engl. 2023 Aug 21;62(34):e202304797. doi: 10.1002/anie.202304797. Epub 2023 Jul 17.

Abstract

Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions provides an intriguing pathway to convert N2 into NH3 . However, significant kinetic barriers of the NRR at low temperatures in desirable aqueous electrolytes remain a grand challenge due to the inert N≡N bond of the N2 molecule. Herein, we propose a unique strategy for in situ oxygen vacancy construction to address the significant trade-off between N2 adsorption and NH3 desorption by building a hollow shell structured Fe3 C/Fe3 O4 heterojunction coated with carbon frameworks (Fe3 C/Fe3 O4 @C). In the heterostructure, the Fe3 C triggers the oxygen vacancies of the Fe3 O4 component, which are likely active sites for the NRR. The design could optimize the adsorption strength of the N2 and Nx Hy intermediates, thus boosting the catalytic activity for the NRR. This work highlights the significance of the interaction between defect and interface engineering for regulating electrocatalytic properties of heterostructured catalysts for the challenging NRR. It could motivate an in-depth exploration to advance N2 reduction to ammonia.

Keywords: Electrocatalyst; Fe3C/Fe3O4; Heterojunction; Nitrogen Fixation; Oxygen Vacancies Engineering.