Facile Synthesis of Linear and Cyclic Poly(diphenylacetylene)s by Molybdenum and Tungsten Catalysis

Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202302332. doi: 10.1002/anie.202302332. Epub 2023 Jul 10.

Abstract

Improved methods for the synthesis of linear and cyclic poly(diphenylacetylene)s by polymerization of the corresponding diphenylacetylenes using MoCl5 - and WCl4 -based catalytic systems have been developed. MoCl5 induces migratory insertion polymerization of diphenylacetylenes in the presence of arylation reagents such as Ph4 Sn and ArSnn Bu3 to produce cis-stereoregular linear poly(diphenylacetyelene)s with high molecular weights (number-average molar mass (Mn )=30,000-3,200,000) in good yields (up to 98 %). On the other hand, WCl4 induces ring expansion polymerization of diphenylacetylenes in the presence of Ph4 Sn or reducing reagents to produce cis-stereoregular cyclic poly(diphenylacetylene)s with high molecular weights (Mn =20,000-250,000) in moderate to good yields (up to 90 %). Both catalytic systems are applicable to the polymerization of various diphenylacetylenes having polar functional groups such as esters that are not efficiently polymerized by conventional methods using WCl6 -Ph4 Sn and TaCl5 -n Bu4 Sn systems.

Keywords: Diphenylacetylenes; Molybdenum; Polymerization; Polymers; Tungsten.